Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1-L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life-threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5-T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur.
http://www.ncbi.nlm.nih.gov/pubmed/20108532
Neurogenic shock is shock caused by the sudden loss of the autonomic nervous system signals to the smooth muscle in vessel walls. This can result from severe central nervous system (brain and spinal cord) damage. With the sudden loss of background sympathetic stimulation, the vessels suddenly relax resulting in a sudden decrease in peripheral vascular resistance (vasodilation)[1] and decreased blood pressure.
http://www.ncbi.nlm.nih.gov/pubmed/20108532
Neurogenic shock is shock caused by the sudden loss of the autonomic nervous system signals to the smooth muscle in vessel walls. This can result from severe central nervous system (brain and spinal cord) damage. With the sudden loss of background sympathetic stimulation, the vessels suddenly relax resulting in a sudden decrease in peripheral vascular resistance (vasodilation)[1] and decreased blood pressure.
Signs and symptoms
- hypotension
- bradycardia
- warm, dry extremities
- peripheral vasodilation
- venous pooling
- Poikilothermia
- Priapism Due to PNS stimulation
- decreased cardiac output (with cervical or high thoracic injury)
Mayo Clinic investigates the same disorder as the one resulting from the elective surgical sympathectomy
Autoimmune autonomic ganglionopathy is characterized by impairment of multiple autonomic domains of which sudomotor function is among the most common. Many patients with this disorder have difficulties with thermoregulation and anhidrosis.
http://www.ncbi.nlm.nih.gov/pubmed/19884578
Sudomotor dysfunction in autoimmune autonomic ganglionopathy
http://www.ncbi.nlm.nih.gov/pubmed/19884578
Other alternative more selective methods, rather than cutting the main trunk should be studied
Compensatory sweating remains the most common, and most disabling complication of video-assisted thoracoscopic sympathectomy. Other alternative more selective methods, rather than cutting the main trunk should be studied thoroughly to assess their efficacy in reducing the complication of compensatory sweating.
http://www.ncbi.nlm.nih.gov/pubmed/18521466
http://www.ncbi.nlm.nih.gov/pubmed/18521466
Evidence: sympathectomy created imbalance of autonomic activity and functional changes of the intrathoracic organs
in the intrathoracic organs.
Therefore, the procedures affecting sympathetic nerve functions, such as epidural anesthesia, ESD, and heart transplantation, may cause an imbalance between sympathetic and parasympa-
thetic activities (1, 6, 16, 17). Recently, it has been reported that ESD results in functional changes of the intrathoracic organs.
In conclusion, our study demonstrated that ESD adversely affected lung function early after surgery and the BHR was affected by an imbalance of autonomic activity created by bilateral ESD in patients with primary focal hyperhidrosis.
Journal of Asthma, 46:276–279, 2009