The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Thursday, May 19, 2011

Collagen types I and III mRNA were decreased respectively by 53% and 22% after sympathectomy

In the present study, we tested the hypothesis of the indirect (via the sympathetic nervous system (SNS)) and direct (via AT1 receptors) contributions of Angiotensin II (Ang II) on the synthesis of collagen types I and III in the left ventricle (LV) in vivo. Sympathectomy and blockade of the Ang II receptor AT1 were performed alone or in combination in normotensive rats. The mRNA and protein synthesis of collagen types I and III were examined by Q-RT-PCR and immunoblotting in the LV.
Collagen types I and III mRNA were decreased respectively by 53% and 22% after sympathectomy and only collagen type I mRNA was increased by 52% after AT1 receptor blockade. mRNA was not changed for collagen type I but was decreased by 25% for collagen type III after double treatment. Only collagen protein type III was decreased after sympathectomy by 12%, but collagen proteins were increased respectively for types I and III by 145% and 52% after AT1 receptor blockade and by 45% and 60% after double treatment. Deducted interpretations from our experimental approach suggest that Ang II stimulates indirectly (via SNS) and inhibits directly (via AT1 receptors) the collagen type I at transcriptional and protein levels. For collagen type III, it stimulates indirectly the transcription and inhibited directly the protein level. Therefore, the Ang II regulates collagen synthesis differently through indirect and direct pathways.
http://www.autonomicneuroscience.com/article/S1566-0702(09)00416-0/abstract

we conclude that the sympathetic nervous system influences the metabolic activity of the aorta

The effect of chemical sympathectomy with 6-hydroxydopamine (6-OH-DA) on collagen formation in the aortic wall was investigated in rabbits and rats. Eight weeks after 6-OH-DA treatment of rabbits, there was a significant increase an collagen content in aortas and histologic changes in the elastic elements within the media. The possibility of a direct effect of 6-OH-DA on connective tissue formation was investigated in a subsequent experiment in rats. The rates of collagen synthesis and prolyl hydroxylase activity (PHA) were determined in aortas and in the fibrotic granuloma around subcutaneously implanted polyvinylalcohol sponges. Rates of collagen synthesis and PHA were significantly increased in the aortas of 6-OH-DA treated rats, but not in fibrotic granuloma, confirming the changes seen in the aorta of rabbits and suggesting that 6-OH-DA does not directly affect collagen synthesis. We conclude that the sympathetic nervous system influences the metabolic activity of the aorta. Our data indicate that when the aortic wall is deprived of adrenergic nervous stimulation, changes occur which resemble those seen in natural aging of the aorta. It is plausible to assume that such a metabolic derangement in the vessel wall will make these vessels more vulnerable to additional stresses.