The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Tuesday, December 30, 2014

Peripheral, autonomic regulation of locus coeruleus noradrenergic neurons in brain: putative implications for psychiatry and psychopharmacology

the new data seem to allow a better understanding of how autonomic vulnerability or visceral dysfunction may precipitate or aggravate mental symptoms and disorder.

T. H. Svensson1
(1)Department of Pharmacology, Karolinska Institute, Box 60 400, S-104 01 Stockholm, Sweden
Received: 20 June 1986 Revised: 25 November 1986
Psychopharmacology

"Locus coeruleus (LC) is located in the ventrallateral side of the fourth ventricle in the pontine, most of which are noradrenergic neurons projecting to the cortex, cingulate cortex, amygdala nucleus, thalamus, hypothalamus, olfactory tubercles, hippocampus, cerebellum, and spinal cord (Swanson and Hartman, 1975). Norepinephrine (NE) released from the nerve terminal of LC neurons contributes to about 70% of the total extracellular NE in primates brain (Svensson, 1987). It plays important roles not only in arousal, attention, emotion control, and stress (reviewed in Aston-Jones and Cohen, 2005Berridge and Waterhouse, 2003Bouret and Sara, 2005Nieuwenhuis et al., 2005Sara and Devauges, 1989Valentino and Van Bockstaele, 2008), but also in sensory information processing (Svensson, 1987). LC directly modulates the somatosensory information from the peripheral system. Under the stress condition, LC could completely inhibit the input from painful stimuli through the descending projection to the spinal cord (Stahl and Briley, 2004). Dys-regulations of LC neurotransmission have been suggested to be involved in physical painful symptoms, attention deficit hyperactivity disorder (ADHD), sleep/arousal disorder, post-traumatic stress disorder, depression, schizophrenia, and Parkinson's disease (reviewed in Berridge and Waterhouse, 2003Grimbergen et al., 2009Mehler and Purpura, 2009)."
http://journal.frontiersin.org/Journal/10.3389/fnmol.2012.00029/full

Monday, December 29, 2014

"Since changes in old age show some similarities with those following chronic sympathectomy"

"For the tracheobronchial tree. surgical (sympathectomy) and chemical (with 6-hydroxydopamine or reserpine) interventions lead to histological disappearance of the NA and NPY." (p.435)

" Prejunctional supersensitivity to norepinephrine after sympathectomy or cocaine treatment." (p. 410)

"Following chronic sympathectomy, substance P expression in presumptive sensory nerves....and NPY-expression in parasympathetic nerves ...to autonomically innervated tissues have both been shown to increase... Experiments using NGF and anti-NGF antibodies (Kessler et al., 1983) have suggested that competition between sympathetic and sensory fibers for target-derived growth factors could explain these apparently compensatory interactions,..." (p. 33)

"Since changes in old age show some similarities with those following chronic sympathectomy, it is tempting to consider whether alterations in one group of nerves in tissues with multiple innervations trigger reciprocal changes in other populations of nerves, perhaps through the mechanism of competition for common, target-produced growth factors. The nature of these changes is such that they could be nonadaptive and even destabilizing of cardiovascular homeostasis. (p. 34) 

Impairment of sympathetic and neural function has been claimed in cholesterol-fed animals (Panek et al., 1985). It has also been suggested that surgical sympathectomy may be useful in controlling atherosclerosis in certain arterial beds (Lichter et al., 1987). Defective cholinergic arteriolar vasodilation has been claimed in atherosclerotic rabbits (Yamamoto et al., 1988) and, in our laboratory, we have recently shown impairment of response to perivascular nerves supplying the mesenteric, hepatic, and ear arteries of Watanabe heritable hyperlipidemic rabbits (Burnstock et al., 1991). 
   Loss of adrenergic innervation has been reported in alcoholism (Low et al., 1975), amyloidosis (Rubenstein et al., 1983), orthostatic hypotension (Bannister et al., 1981), and subarachnoid haemorrhage (Hara and Kobayashi, 1988). Recent evidence shows that there is also a loss of noradrenergic innervation of blood vessels supplying malignant, as compared to benign, human intracranial tumours (Crockard et al., 1987). (p. 14)  

Vascular Innervation and Receptor MechanismsNew    Perspectives 

Rolf Uddman
Academic Press2 Dec 2012 - Medical - 498 pages

Saturday, December 27, 2014

sympathectomy leads to fluctuation of vasoconstriction alternated with vasodilation in an unstable fashion. Following sympathectomy the involved extremity shows regional hyper - and hypothermia

Chronic Pain
 Reflex Sympathetic Dystrophy : Prevention and Management
Front Cover
CRC PressINC, 1993 - Medical - 202 pages





 To quote Nashold, referring to sympathectomy, "Ill- advised surgery may tend to magnify the entire symptom complex"(38). Sympathectomy is aimed at achieving vasodilation. The neurovascular instability (vacillation and instability of vasoconstrictive function), leads to fluctuation of vasoconstriction alternated with vasodilation in an unstable fashion (39). Following sympathectomy the involved extremity shows regional hyper - and hypothermia in contrast, the blood flow and skin temperature on the non- sympathectomized side are significantly lower after exposure to a cold environment (39). This phenomenon may explain the reason for spread of CRPS. In the first four weeks after sympathectomy, the Laser Doppler flow study shows an increased of blood flow and hyperthermia in the extremity (40). Then, after four weeks, the skin temperature and vascular perfusion slowly decrease and a high amplitude vasomotor constriction develops reversing any beneficial effect of surgery (39). According to Bonica , "about a dozen patients with reflex sympathetic dystrophy (RSD) in whom I have carried out preoperative diagnostic sympathetic block with complete pain relief, sympathectomy produced either partial or no relief (40)"

Chronic Pain

 Reflex Sympathetic Dystrophy : Prevention and Management

Thursday, December 25, 2014

Despite the simplicity and rapidity of the procedure, some patients experience intense, in some cases persistent, postoperative pain

Jornal Brasileiro de Pneumologia - The incidence of residual pneumothorax after video-assisted sympathectomy with and without pleural drainage and its effect on postoperative pain:

"Anteroposterior chest X-ray in the orthostatic position, while inhaling, was absolutely normal in 18 patients (32.1%), and residual pneumothorax was detected in 17 patients (30.4%). When the patients were separated into two groups (those who had received drainage and those who had not), 25.9% (7 patients) and 34.4% (10 patients), respectively, presented residual pneumothorax, with no difference between the two groups (p = 0.48) (Figure 1).

The additional alterations were laminar atelectasis and emphysema of the subcutaneous cellular tissue.

Chest X-rays in the orthostatic position, while exhaling, revealed residual pneumothorax in 39.3% (22 patients) and was absolutely normal in 25% (14 patients). On the same X-rays, when patients were analyzed separately, residual pneumothorax was seen in 33.3% of the patients who had received drainage (9 patients) and in 44.8% (13 patients) of those who had not, with no difference between the two groups (p = 0.37) (Figure 1).

The low-dose computed tomography scans of the chest detected residual pneumothorax in 76.8% (43 patients). In the patients submitted to postoperative drainage, this rate was 70.3% (19 patients), compared with 82.7% (24 patients) in those without pleural drainage, with no difference between the two groups (p = 0.27) (Figure 1). Therefore, the overall rate of occult pneumothorax (only visible through tomography), revealed on anteroposterior X-rays was 35.7% (20 patients): 48.2% while patients were inhaling and 41.1% while patients were exhaling. The VAS score in the PACU ranged from 0 to 10, with a mean of 2.16 ± 0.35.

Regarding characteristics, 44.6% of the patients reported chest pain upon breathing and 32.1% reported retrosternal pain. The same evaluation performed in the infirmary, during the immediate postoperative period, ranged from 0 to 10, with a mean of 3.75 ± 0.30, being 69.6% of chest pain upon breathing and 78.6% of retrosternal pain. On postoperative day 7, according to VAS, pain ranged from 0 to 10, with a mean of 2.05 ± 0.31; regarding characteristics, it was continuous in 32.1% of the cases, and retrosternal in 26.8%. On postoperative day 28, pain ranged from 0 to 3, with a mean of 0.17 ± 0.08, 7.1% of mechanical rhythm and 5.4% upper posterior."

Jornal Brasileiro de Pneumologia

Print version ISSN 1806-3713

J. bras. pneumol. vol.34 no.3 São Paulo Mar. 2008


http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-37132008000300003&lng=en&nrm=iso&tlng=en

Despite the simplicity and rapidity of the procedure, some patients experience intense, in some cases persistent, postoperative pain

Jornal Brasileiro de Pneumologia - The incidence of residual pneumothorax after video-assisted sympathectomy with and without pleural drainage and its effect on postoperative pain:



"Anteroposterior chest X-ray in the orthostatic position, while inhaling, was absolutely normal in 18 patients (32.1%), and residual pneumothorax was detected in 17 patients (30.4%). When the patients were separated into two groups (those who had received drainage and those who had not), 25.9% (7 patients) and 34.4% (10 patients), respectively, presented residual pneumothorax, with no difference between the two groups (p = 0.48) (Figure 1).



The additional alterations were laminar atelectasis and emphysema of the subcutaneous cellular tissue.



Chest X-rays in the orthostatic position, while exhaling, revealed residual pneumothorax in 39.3% (22 patients) and was absolutely normal in 25% (14 patients). On the same X-rays, when patients were analyzed separately, residual pneumothorax was seen in 33.3% of the patients who had received drainage (9 patients) and in 44.8% (13 patients) of those who had not, with no difference between the two groups (p = 0.37) (Figure 1).



The low-dose computed tomography scans of the chest detected residual pneumothorax in 76.8% (43 patients). In the patients submitted to postoperative drainage, this rate was 70.3% (19 patients), compared with 82.7% (24 patients) in those without pleural drainage, with no difference between the two groups (p = 0.27) (Figure 1).

Therefore, the overall rate of occult pneumothorax (only visible through tomography), revealed on anteroposterior X-rays was 35.7% (20 patients): 48.2% while patients were inhaling and 41.1% while patients were exhaling.

The VAS score in the PACU ranged from 0 to 10, with a mean of 2.16 ± 0.35.



Regarding characteristics, 44.6% of the patients reported chest pain upon breathing and 32.1% reported retrosternal pain. The same evaluation performed in the infirmary, during the immediate postoperative period, ranged from 0 to 10, with a mean of 3.75 ± 0.30, being 69.6% of chest pain upon breathing and 78.6% of retrosternal pain.

On postoperative day 7, according to VAS, pain ranged from 0 to 10, with a mean of 2.05 ± 0.31; regarding characteristics, it was continuous in 32.1% of the cases, and retrosternal in 26.8%. On postoperative day 28, pain ranged from 0 to 3, with a mean of 0.17 ± 0.08, 7.1% of mechanical rhythm and 5.4% upper posterior."



Jornal Brasileiro de Pneumologia

Print version ISSN 1806-3713

J. bras. pneumol. vol.34 no.3 São Paulo Mar. 2008



http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-37132008000300003&lng=en&nrm=iso&tlng=en


Our data confirmed that sympathectomy in patients with EPH results in a disturbance of bronchomotor tone and cardiac function

Our study was composed of patients affected by EH, and thus having a dysfunction of sympathetic activity. The observed respiratory and clinical effects would probably not be observed in healthy individuals.

(ii) The cardio-respiratory effects were observed 6 months after operation. However, a longer postoperative period would be required to determine if they are long-term effects.

(iii) The number of patients was too limited, thus our results should be corroborated by larger studies.

CONCLUSION

Our data confirmed that sympathectomy in patients with EPH results in a disturbance of bronchomotor tone and cardiac function.

Eur J Cardiothorac Surg
doi: 10.1093/ejcts/ezs071

Tuesday, December 23, 2014

"sympathicotomy may cause a temporary impairment of the caudal-to-rostral hierarchy of thermoregulatory control and changes in microcirculation"

Patients with palmar hyperhidrosis have been reported to have a much
more complex dysfunction of autonomic nervous system, involving compensatory high parasympathetic activity as well as sympathetic overactivity (13, 14), suggesting that sympathicotomy initially induces a sympathovagal imbalance with a parasympathetic predominance, and that this is restored on a long-term basis (14). Therefore, thoracic sympathicotomy may cause a temporary impairment of the caudal-to-rostral hierarchy of thermoregulatory control and changes in microcirculation.

The reduction of finger skin temperature on the non-denervated side may be due to either a decrease in the cross-
inhibitory effect or the abnormal control of the inhibitory fibers by the sudomotor center (6).
Vasoconstrictor neurons have been found to be largely under the inhibitory control of various afferent
input systems from the body surface, whereas sudomotor neurons are predominantly under excitatory
control (15). The basic neuronal network for this reciprocal organization is probably located in the spinal level (15). Therefore, the reduction in the contralateral skin temperature may be explained by cross-inhibitory control of various afferent in the spinal cord.
In particular, our study showed that, following bilateral T3 sympathicotomy, the skin temperatures on
the hands increased whereas the skin temperatures on the feet decreased. These findings suggest a
cross-inhibitory control between the upper and lower extremities. However, the pattern of skin
temperature reduction on the feet differed from that on the contralateral hand. The skin temperature on
the feet did not decrease after right T3 sympathicotomy but decreased significantly after bilateral T3
sympathicotomy.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722005/

Saturday, December 13, 2014

functional abnormality detected in the small airway of patients who underwent bilateral dorsal sympathectomy to treat primary hyperhidrosis is still present 3 years after surgery

The main observation of our study was that the functional abnormality detected in the small airway of patients who underwent bilateral dorsal sympathectomy to treat primary hyperhidrosis is still present 3 years after surgery, although the patients remain clinically asymptomatic.
Studies to date evaluate alterations in lung function at 1, 3, and 6 months after sympathectomy. Only 1 recent study provides data 1 year after surgery. Ponce González et al10 studied a group of 37 patients who underwent forced spirometry before surgery, and at 3 months and 1 year after surgery. They observed a decrease in FVC, FEV1, and FEF25%-75% at 3 months, although FVC returned to baseline values at 12 months, whereas FEV1 and FEF25%-75% remained significantly low (-2.8% and -11.2%, respectively). These findings are consistent with ours, and corroborate the persistence of minimal bronchial obstruction 3 years after surgery. This appears to be associated with the influence of the sympathetic nervous system on bronchomotor tone.
As previously mentioned, the airway is innervated mainly by the parasympathetic nervous system. Sympathetic innervation, although scant, indirectly affects motor tone and could have caused the mild residual obstructive pattern after surgery. Despite the doubtful role of the sympathetic nervous system in the lung, a series of physiologic studies show the effect of sympathetic nervous activity after bilateral dorsal sympathectomy.11,12 The first was by Noppen and Vincken4, who compared the results of lung function studies (spirometry, diffusion, and lung volumes using plethysmography) in 7 patients before dorsal sympathectomy performed using VATS, at 6 weeks, and at 6 months (previous studies had been performed using invasive techniques [thoracotomy]). A statistically significant decrease was observed in FEV1, FEF25%-75%, and total lung capacity 6 weeks after surgery. At 6 months, the authors again evaluated the 35 patients and found that total lung capacity had returned to normal values, whereas FEF25%-75% remained low. They attributed the permanent decrease in FEF25%-75% to the sympathetic denervation produced by surgery, and stressed that, in patients with primary hyperhidrosis, bronchomotor tone is influenced by the sympathetic nervous system. This contrasts with the common opinion that motor tone in the airway is not affected by this system. Both the study by Ponce González et al,10 who evaluated their patients at 1 year, and our study, in which we evaluated patients at 3 years, show that persistence of the decrease in FEF25%-75% over time is related more to sympatholysis of the ganglia than to VATS.


Thursday, December 4, 2014

Evidence based medicine is broken | The BMJ

Evidence based medicine is broken | The BMJ: "How many people care that the research pond is polluted,5 with fraud, sham diagnosis, short term data, poor regulation, surrogate ends, questionnaires that can’t be validated, and statistically significant but clinically irrelevant outcomes? Medical experts who should be providing oversight are on the take. Even the National Institute for Health and Care Excellence and the Cochrane Collaboration do not exclude authors with conflicts of interest, who therefore have predetermined agendas.6 7 The current incarnation of EBM is corrupted, let down by academics and regulators alike.8"



http://www.bmj.com/content/348/bmj.g22

Wednesday, December 3, 2014

Effect of ganglion blockade on cerebrospinal fluid norepinephrine

Prevention of ganglion blockade-induced hypotension using phenylephrine did not prevent the decrease in CSF NE caused by trimethaphan, and when phenylephrine was discontinued, the resulting hypotension was not associated with increases in CSF NE. The similar decreases in plasma NE and CSF NE during ganglionic blockade, and the abolition of reflexive increases in CSF NE during hypotension in ganglion-blocked subjects, cast doubt on the hypothesis that CSF NE indicates central noradrenergic tone and are consistent instead with at least partial derivation of CSF NE from postganglionic sympathetic nerve endings.

Monday, December 1, 2014

"Similar low values are observed in patients with sympathectomy and in patients with tetraplegia"

"Patients with progressive autonomic dysfunction (including diabetes) have little or no increase in plasma noradrenaline and this correlates with their orthostatic intolerance (Bannister, Sever and Gross, 1977). In patients with pure autonomic failure, basal levels of noradrenaline are lower than in normal subjects (Polinsky, 1988). Similar low values are observed in patients with sympathectomy and in patients with tetraplegia. (p.51)

The finger wrinkling response is abolished by upper thoracic sympathectomy. The test is also abnormal in some patients with diabetic autonomic dysfunction, the Guillan-Barre syndrome and other peripheral sympathetic dysfunction in limbs. (p.46)

Other causes of autonomic dysfunction without neurological signs include medications, acute autonomic failure, endocrine disease, surgical sympathectomy . (p.100)

Anhidrosis is the usual effect of destruction of sympathetic supply to the face. However about 35% of patients with sympathetic devervation of the face, acessory fibres (reaching the face through the trigeminal system) become hyperactive and hyperhidrosis occurs, occasionally causing the interesting phenomenon of alternating hyperhidrosis and Horner's Syndrome (Ottomo and Heimburger, 1980). (p.159)



Disorders of the Autonomic Nervous System
By David Robertson, Italo Biaggioni
Edition: illustrated
Published by Informa Health Care, 1995
ISBN 3718651467, 9783718651467"