The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Sunday, April 27, 2008

Autonomic innervation of immune organs and neuroimmune modulation.

Autonomic & Autacoid Pharmacology. 23(1):1-25, February 2003.
Mignini, F.; Streccioni, V.; Amenta, F.

Abstract:
Summary: 1 Increasing evidence indicates the occurrence of functional interconnections between immune and nervous systems, although data available on the mechanisms of this bi-directional cross-talking are frequently incomplete and not always focussed on their relevance for neuroimmune modulation.

2 Primary (bone marrow and thymus) and secondary (spleen and lymph nodes) lymphoid organs are supplied with an autonomic (mainly sympathetic) efferent innervation and with an afferent sensory innervation. Anatomical studies have revealed origin, pattern of distribution and targets of nerve fibre populations supplying lymphoid organs.

3 Classic (catecholamines and acetylcholine) and peptide transmitters of neural and non-neural origin are released in the lymphoid microenvironment and contribute to neuroimmune modulation. Neuropeptide Y, substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide represent the neuropeptides most involved in neuroimmune modulation.

4 Immune cells and immune organs express specific receptors for (neuro)transmitters. These receptors have been shown to respond in vivo and/or in vitro to the neural substances and their manipulation can alter immune responses. Changes in immune function can also influence the distribution of nerves and the expression of neural receptors in lymphoid organs.

5 Data on different populations of nerve fibres supplying immune organs and their role in providing a link between nervous and immune systems are reviewed. Anatomical connections between nervous and immune systems represent the structural support of the complex network of immune responses. A detailed knowledge of interactions between nervous and immune systems may represent an important basis for the development of strategies for treating pathologies in which altered neuroimmune cross-talking may be involved.