Increased chemosensitivity has been observed in HF (heart failure) and, in order to clarify its pathophysiological and clinical relevance, the aim of the present study was to investigate its impact on neurohormonal balance, breathing pattern, response to exercise and arrhythmic profile.
Those with enhanced chemosensitivity to both hypoxia and hypercapnia (i.e. HVR and HCVR), compared with those with normal chemosensitivity, had significantly (all P<0.01) higher noradrenaline (norepinephrine) and BNP (B-type natriuretic peptide) levels, higher prevalence of daytime and night-time CSR, worse NYHA (New York Heart Association) class and ventilatory efficiency [higher VE (minute ventilation)/VCO(2) (carbon dioxide output) slope], and a higher incidence of chronic atrial fibrillation and paroxysmal non-sustained ventricular tachycardia, but no difference in left ventricular volumes or LVEF. A direct correlation was found between HVR or HCVR and noradrenaline.
Clin Sci (Lond). 2008 Apr;114(7):489-97.
Those with enhanced chemosensitivity to both hypoxia and hypercapnia (i.e. HVR and HCVR), compared with those with normal chemosensitivity, had significantly (all P<0.01) higher noradrenaline (norepinephrine) and BNP (B-type natriuretic peptide) levels, higher prevalence of daytime and night-time CSR, worse NYHA (New York Heart Association) class and ventilatory efficiency [higher VE (minute ventilation)/VCO(2) (carbon dioxide output) slope], and a higher incidence of chronic atrial fibrillation and paroxysmal non-sustained ventricular tachycardia, but no difference in left ventricular volumes or LVEF. A direct correlation was found between HVR or HCVR and noradrenaline.
Clin Sci (Lond). 2008 Apr;114(7):489-97.