The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Thursday, April 3, 2008

changes in phrenic nerve activity, blood pressure and nasal patency.

A role for the ventral surface of the medulla in regulation of nasal resistance

M. A. Haxhiu, K. P. Strohl, M. P. Norcia, E. van Lunteren, E. C. Deal Jr and N. S. Cherniack

Nasal resistance is known to be affected by changes in nasal blood volume and hence to depend on sympathetic discharge to nasal blood vessels. Structures located superficially near the ventrolateral surface of the medulla significantly affect respiratory and sympathetic activity and the tone of the trachea. To assess the importance of these structures on nasal patency, we measured transnasal pressure at a constant flow and examined the change in pressure produced by topically applied N-methyl-D-aspartic acid (NMDA). Experiments were performed in chloralose-anesthetized, paralyzed, and artificially ventilated cats. NMDA administered on the intermediate area of the ventral surface of the medulla decreased transnasal pressure and increased phrenic nerve activity. The response to NMDA could be diminished or abolished by application to the ventral medullary surface of the NMDA antagonist 2-amino-5-phosphonovalerate (2-APV) or the local anesthetic lidocaine. Carotid sinus denervation and posthypothalamic decerebration did not alter the nasal and phrenic nerve responses to NMDA; however, cervical sympathetic denervation decreased these responses, both in intact and in bilaterally adrenalectomized animals. Therefore, activation of NMDA receptors on structures near the ventral surface of the medulla increases tone in the nasal vasculature and leads to a response pattern that includes changes in not only phrenic nerve activity and blood pressure but also nasal patency.
http://ajpregu.physiology.org/cgi/content/abstract/253/3/R494

Am J Physiol Regul Integr Comp Physiol 253: R494-R500, 1987;
0363-6119/87 $5.00

AJP - Regulatory, Integrative and Comparative Physiology, Vol 253, Issue 3 494-R500, Copyright © 1987 by American Physiological Society