Dopamine has moved from being an insignificant intermediary in the formation of noradrenaline in 1957 to its present-day position as a major neurotransmitter in the brain. This neurotransmitter is involved in the control of movement and Parkinson's disease, the neurobiology and symptoms of schizophrenia and attention deficit hyperactivity disorder. It is also considered an essential element in the brain reward system and in the action of many drugs of abuse. This evolution reflects the ability of several famous names in neuropharmacology, neurology and psychiatry to apply new techniques to ask and answer the right questions. There is now excellent knowledge about the metabolism of dopamine, dopamine receptor systems and the structural organisation of dopamine pathways in the brain. Less is known about the function of the different receptors and how the various dopamine pathways are organised to produce normal behaviour, which exhibits disruption in the disease states mentioned. In particular, we have very limited information as to why and how the dopamine system dies or becomes abnormal in Parkinson's disease or a neurodevelopmental disorder such as schizophrenia. Dopamine neurones account for less than 1% of the total neuronal population of the brain, but have a profound effect on function. The future challenge is to understand how dopamine is involved in the integration of information to produce a relevant response rather than to study dopamine in isolation from other transmission systems. This integrated approach should lead to greater understanding and improved treatment of diseases involving dopamine.
Charles A Marsden
1
School of Biomedical Sciences, Institute of Neuroscience, Medical School, Queen's Medical Centre, University of
Nottingham, Nottingham NG7 2UH
"Sympathectomy is a technique about which we have limited knowledge, applied to disorders about which we have little understanding." Associate Professor Robert Boas, Faculty of Pain Medicine of the Australasian College of Anaesthetists and the Royal College of Anaesthetists The Journal of Pain, Vol 1, No 4 (Winter), 2000: pp 258-260
The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf
After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.
http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf
After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.
http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract