The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Sunday, April 20, 2008

Sympathetic nervous system mediates cold stress-induced suppression of natural killer cytotoxicity

The aim of the present study is to investigate the mechanisms of suppression of splenic natural killer (NK) cytotoxicity caused by cold stress, using 6-hydroxydopamine (6-OHDA) as chemical sympathectomy. The NK activity was measured by 51chromium release assay. Central sympathectomy with intracerebroventricular injection of 6-OHDA significantly reduced the elevation of the plasma corticosterone level, the expression of Fos in hypothalamic paraventricular nucleus and in locus coeruleus, as well as the suppression of NK activity induced by cold stress at 4 °C for 4 h. Peripheral sympathectomy with intraperitoneal (i.p.) injection of 6-OHDA and blockade of β-adrenergic receptor with i.p. injection of propranolol also reversed the cold stress-induced suppression of NK cytotoxicity, but without significant effect on Fos expression in the brain. The results suggest that the activation of the hypothalamic-pituitary-adrenal axis induced by cold stress might be mediated, at least partially, by the central noradrenergic system, and that the cold stress-induced suppression of NK cytotoxicity might be mediated by the activation of the peripheral sympathetic nerve.

JIANG Xing-Hong (1 2) ; GUO Shi-Yu (1 2) ; SHUANG XU (1 2) ; YIN Qi-Zhang (2) ; OHSHITA Yusuke (1) ; NAITOH Michiko (1) ; HORIBE Yuzo (1) ; HISAMITSU Tadashi (1) ;
2004, vol. 358, no1, pp. 1-4 [ Neuroscience letters ISSN 0304-3940