The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Saturday, April 19, 2008

procedures that interrupt the only source of central neural input to the pineal gland

PNAS | December 1, 1971 | vol. 68 | no. 12 | 3107-3110
Copyright © 1971 by the National Academy of Sciences

Melatonin Metabolism: Neural Regulation of Pineal Serotonin: Acetyl Coenzyme A N-acetyltransferase Activity

David C. Klein, Joan L. Weller, and Robert Y. Moore

There is a diurnal rhythm in the activity of serotonin N-acetyltransferase in the rat pineal gland. In the normal rat, the nocturnal enzyme activities are 15- to 30-fold greater than are daytime activities. This rhythm is abolished by decentralization or removal of the superior cervical ganglia, procedures that interrupt the only source of central neural input to the pineal gland. This effect of superior cervical sympathectomy on the N-acetyltransferase rhythm cannot be attributed to changes occurring in the denervated pineal parenchymal cells. When chronically denervated glands are placed in organ culture with norepinephrine, the neurotransmitter normally located in sympathetic terminals in the gland, N-acetyltransferase activity increases 10- to 20-fold. These data indicate that superior cervical sympathectomy abolishes the N-acetyl-transferase rhythm by elimination of the input of central signals to the gland. These signals appear to regulate the N-acetyltransferase rhythm in the normal rat by regulation of the release of norepinephrine from the sympathetic terminals within the pineal gland.