The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Saturday, April 19, 2008

Reserpine impairs spatial working memory performance

Repeated daily treatment with the catecholamine-depleting agent, reserpine, dramatically reduced performance on the delayed response task, a test of spatial working memory that depends upon the integrity of the prefrontal cortex. Delayed response performance fell from an average of 27.2/30 trials correct before reserpine treatment to an average of 20.4/30 trials correct after repeated reserpine administration. Injection of the alpha 2-adrenergic agonist, clonidine (0.0001-0.05 mg/kg), to chronic reserpine-treated monkeys significantly restored performance on the delayed response task; performance after an optimal dose averaged 27.8/30 trials correct. Clonidine's beneficial effects on delayed response performance were longlasting; monkeys remained improved for more than 24 h after a single clonidine injection. The finding that clonidine is efficacious in reserpinized animals supports the hypothesis that alpha 2-adrenergic agonists improve cognitive function through actions at postsynaptic, alpha 2-adrenergic receptors on non-adrenergic cells. In contrast to the delayed response task, reserpine had little effect on performance of a visual discrimination task, a reference memory task which does not depend on the prefrontal cortex. These results emphasize the importance of postsynaptic, alpha 2-adrenergic mechanisms in the regulation of working memory.

Cai JX, Ma YY, Xu L, Hu XT
Brain Res 1993; 614:191-6.